La boutique ne fonctionnera pas correctement dans le cas où les cookies sont désactivés.
Le stockage local semble être désactivé dans votre navigateur.
Pour une meilleure expérience sur notre site, assurez-vous d’activer le cache dans votre navigateur.
Leader de l'occasion depuis 1886
En ce moment : SOLDES JUSQU'À - 70%
Livraison à 0.01€ dès 30€ d’achats
-5% sur les livres neufs et livraison offerte avec le retrait dans nos magasins
En ce moment, livraison gratuite pour tous les coolos !
Avantages Fidélité
Service client
Besoin d'aide
Leader de l'occasion depuis 1886
En ce moment : SOLDES JUSQU'À - 70%
Livraison à 0.01€ dès 30€ d’achats
-5% sur les livres neufs et livraison offerte avec le retrait dans nos magasins
En ce moment, livraison gratuite pour tous les coolos !
Avantages Fidélité
Service client
Besoin d'aide
Leader de l'occasion depuis 1886
Livraison à 0.01€ dès 30€ d’achats
-5% sur les livres neufs et livraison offerte avec le retrait dans nos magasins
En ce moment, livraison gratuite pour tous les coolos !
Disponibilités communiquées à titre indicatif, nous ne pouvons vous les garantir.
Les prix de vente peuvent varier des prix en ligne et entre chaque magasin.
Pour les équations paraboliques ou strictement hyperboliques, on n'a envisagé que le problème de Cauchy local, ou le cas où les données de Cauchy sont portées par une variété compacte sans bord ; et pour les équations elliptiques, hormis le cas particulier des équations différentielles ordinaires, on ne s'est guère occupé que du problème de Dirichlet dans un ouvert borné de Rn et des problèmes aux limites de même type.Par contre, dans ce domaine volontairement restreint, l'auteur n'a accordé aucune place privilégiée aux équations à coefficients constants ni aux équations du second ordre (à l'exception d'une section sur le principe du maximum). Il a surtout voulu montrer comment l'usage systématique des opérateurs de Lax-Maslov et des opérateurs pseudo-différentiels, conjugués, dans le cas des équations elliptiques, avec la théorie spectrale des opérateurs dans les espaces hilbertiens, conduit à des méthodes de solution beaucoup plus naturelles et explicites que les méthodes basées sur les "inégalités a priori", et donne directement (lorsque toutes les données sont indéfiniment différentiables) de vraies solutions indéfiniment différentiables, et non des solutions "faibles" inutilisables dans les applications.